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H Y D R O D Y N A M I C  C O N T A C T  B E T W E E N  A R O T A T I N G  

R O L L  A N D  A S E M I P E R M E A B L E  T R A Y  

V. M. Shapovalov UDC 532.516 

A viscous fluid f low in the gap between a side surface of a rotating roll and a rectangular cavity with a 

semipermeable bottom surface is considered in the Reynolds approximation. 

The considered problem deals with the flow of a processed material in a rotor-type granulator consisting 

of two unidirectionally rotating cylinders. The inner solid cylinder is positioned eccentrically with respect to the 

outer perforated one (an inner contact of cylinders) [1 ]. Moreover, the present study may be useful when analyzing 

the flow in the gap of a two-screw extruder (an outer contact of impermeable cylinders) [2 ]. Hydrodynamic contact 

of an infinite cylinder with a semipermeable surface is considered in [3 ]. 

The flow scheme is given in Fig. 1. The tray filled with viscous fluid (a rectangular open channel) with a 

semipermeable bottom surface of width S moves translationally at a velocity W. A roll with a radius R is immersed 

into the channel. U is the peripheral velocity of the cylindrical surface. The side gaps between the roll ends and 

the channel walls are equal. The minimum gap ho in the z direction is constant. The x axis lies on a semipermeable 

surface. The y axis passes through the roll axis. The fluid flow in the end gaps is neglected. Trajectories of fluid 

particles lie in the planes perpendicular to the zaxis; therefore, there is no flow in the z direction (Vz = 0). With 

zero end gaps (6 = 0) and different velocities (U ~ W) on the lines z = 0, y -- h and z -- S, y = h the gradient of 

shear velocity is infinite and, on determining the consumed power, we have a diverging Fourier series [4]. 

Therefore, in the end gaps of finite value, ~ > 0, a linear distribution of an axial velocity is assumed. At U = W it 

may be supposed that 6 = 0. At the flow zone outlet xl the cavitation condition OP/Ox = 0 is taken for pressure [5 ]. 

At points x0, xl and under the semipermeable surface there is atmospheric pressure which is assumed to be equal 

to zero. For the conditions S, h << Xl - x0 shear stresses dominate in the gap and the pressure is uniform in the 

channel cross section (dP/dy  = aP/Ox --- 0) but it changes in the longitudinal direction P(x) .  The permeability of 

the bottom wall is described by the empirical dependence Vy = - K P  at y--- 0. The medium is incompressible. The 

flow is steady-state. Mass and inertia forces are neglected. 

In view of the assumptions adopted the problem is described by the system of equations 

1 d P _  02vx O2Vx (1) 
+ - -  

dx oY z OZ 2 ' 

OV z OVx, + = o (2) 
Ox + Oy ~ ' 

y = O , v x =  W ,  Vy = - KP , (3) 

x 
y = h ,  vy=U- , Vx= 

w +  ( U -  W) z ,  O<__z<_6, 

U ,  3 < _ z < _ S - 3 ,  (4) 

w+(V-W)(S-z), 
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Fig. 1. Flow scheme: 1, roll; 2, rectangular tray; 3, semipermeable wall. 

z = O ,  z = S ,  v y = O ,  v x = W ,  (5) 

x = x 0 , P = O, x = x 1 , P = d P / d x  = 0 .  (6) 

Conditions (4) are obtained for the case sin a = x / R  << 1, since Uy = Usin  a = Ux/R;  v x = U cos a = U. We 

integrate (2) in the region bounded by the sections x and xl,  surfaces y = 0 and y --- h(x),  and wails z -- 0 and z = 

S. Using conditions (3) and (4) for Vy, we can write 

S ~ h C?Vx S Xl S ~ h Ov z 
f f w d y d x d z +  f f ( U s i n a + K P )  d x d z + y  f w d y d x d z = O "  
0 x 0 0 x 0 x 0 

Then,  allowing for the relationships 

0 h h Ov x dh dh 
O--x f vxdy = f -'~x dy + "~x vx (h) , ~ v x (h) = tan a U cos a ,  

0 0 

0 h h Ov z dh dh 
0---~ f vzdy = f --O-Zz dY + -~z Vz (h) ' -~-z = 0 '  vz = O ' 

0 0 

we obtain an intergral form of the discontinuity equation 

S h S h(Xl) Xl 

f f vxdydz= f f v x ( x l )  dydz + S K  f Pdx .  
0 0 0 0 x 

(7) 

The  axial fluid flow in the cross sectionals composed of the axial flow at the channel outlet and of the flow 

seeping through the semipermeable bottom surface. 

In an arbi t rary cross section Eqs. (1), (3)-(5) describe the Dirichlet problem for the Poisson equation. The 

solution of this problem by the Fourier method [6 ] gives the axial velocity profile in an arbi t rary cross section 

Vx= W +  

7gnz 
4S 2 dP ~ sin --if-- 

3 3 
ar It dx  n=l ,3  .... n 

~ n  
ch ~ (2y - h) 

~nh 
c h - -  

2S 

- 1  + 

+ 

~nz ~ny 
sin T sh ---ff- 4S (U - W) 

g26  n=l,3Z~ .... n 2 Sn' ~n h  
s i n - - f f - - - 2 g n s i n  2 ~ 2S ) " (8) 

At x --- x0, z - S/2,  v x < 0, fluid circulation occurs at the flow zone outlet. 

We introduce the dimensionless variables and the parameters 
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x x 1 
p - - - ,  2 - - - ,  P o - - -  

~/ 2Rh o X~ 2Rh o ~[ 2Rh o 

xo_z_, 
,/2Rho 

2KttR U ,5 
r _ - - i - ,  f = - - ,  a = -  

h o W S 

ho 
, q ~ m 

S 

Substituting (8) into (7), we obtain the equation for pressure 

22 _ p2 -I- D d P  ;t + ( ] - l )  B + F f P d p = 0 ,  (9) 
p 

where 

D -  1 1 +p2 3 5 ; 
12q 2 yr q n=1,3 .... n 

B = ~  ~ n -4 s i n ~ n A - 2 ~ n s i n  2 X 
~3~4q n=l,3 .... 

x { th [ ~ ' ~  (1 + 22) ] - lh [ ~ ' ~  (1 + P2) ] } �9 

In Eq. (9) the parabolic approximation for the gap height was used: h -- ho(1 + p2) [7 ]. 
The velocity of the efflux through the perforated bottom surface is uniform over the channel width, since 

OP/Oz = 0. The fluid flow through this surface is determined by the integral 

x 1 
Q =  SK f Pdx = hoSWFI1,  

x 0 

(lo) 

where 

2 
11 = f "fidp. 

PO 

The bouyancy force affecting the roll from the fluid side is 

Xl 2 S W p R  
F = S  f P d x =  I 1 . 

x o ho 

(11) 

[8 ]: 

From (10), (11) we have for permeability K-- Q / F .  

The consumed power can be determined by shear stresses affecting the channel walls from the fluid side 

N = l u  f v x ~ d z + 2 W  f Oz dy d x ,  
x 0 o o o 

or, with account for (8) 

;t 
N h 0 ~  = / 2 + f  

2w t,s 4 2Rho ,o ~ q  dp n=l,3 .... 2 
+ 
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Fig. 2. Pressure diagrams in the channel: solid lines, F -- 0; dashed lines, 0.2; 

1, q -  O; 2, 0.4. 

where 

t + , a p ,  

r n='1,3,.., n 

2 

I 2 = -  f -fipd p . 
PO 

Friction in the gaps between the channel side walls and the roll ends is disregarded. 

We analyze in detail the case of equality of surface velocities U = W at zero side gaps A = 0. Considering 

the integrals 11, 12 in (9)-(12) as functions of the lower limit of integration, we obtain for pressure and the 

mentioned integrals a system of differential equations of first order 

2 -- 22 dP p - FI  1 dI  1 - d I  2 
d o -  D ' dp - - P '  dp - t i p '  

p=2, fi=/x=I2=0, p = P o ,  P=0. 

The  analysis is performed by the Runge-Kutta method. The calculations were started at an a priori assigned 

point p = 2 and ended at the point p < P0, where the function P attained a negative value. A step over p is 0.05. 

The values of P0, 11, 12 were determined by interpolation of P in the vicinity of the inversion point. The  value q = 

0 corresponds to an infinite roll width (S --- ~o) and the relation 

lim D = (1 + p2)3 
12 q->0 

holds. 

Figure 2 presents the calculated pressure profiles at different values of q and flow zone length 2 - P0 - 3. 

In the case of an infinitely wide roll (q = 0) the pressure gradient and the pressure itself at the beginning of the 

flow zone are insignificant. As q increases (converging of the side wails) the pressure gradient at the beginning of 

the flow zone grows and the maximum pressure increases: thus, at q = 1, P = 0 it reaches P = 11 (not shown in the 

figure). With increase in the permeability of the bottom surface, the pressure decreases. Fluid friction on the side 

walls enhances the pressure effect typical of the roll processes, which is manifested itself in an increase of the 

pressure gradient in a minimum gap and in the flow section behind a minimum gap. Friction on the side walls 

increases fluid flow through the semipermeable surface since it is proportional to the area of the pressure diagram. 

Fluid flow through the bottom surface also increases with the length of the flow zone. Thus, at F = 0. i ,  q = 0.2 

growth of 2 - P 0  from 3.06 to 7.17 increases 11 from 2.76 to 11.32. Correspondingly, the consumed power charac- 

terized b y / 2  grows from 3.38 to 24.5. 
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Fig. 3. Dependence of 11 on the flow zone length: solid lines, q = 0; dashed 

lines, 0.2; dot-and-dash lines, 1; 1, F --- 0; 2, O.1; 3, 1. 

In Fig. 3 the effect of the parameters q, F, 2-p0 on the parameter 11 characterizing the flow through the 

semipermeable surface (10) and the thrust force (11) are shown. Fluid friction on the side walls qualitatively 

changes the dependence. For an infinitely wide roll (S -- ~,  q = 0) the existence of a limiting buoyancy force, power 

consumed, and flow seeping through a semipermeable surface is typical. This was noted in [9 ]. Thus, at q = 0 and 

with an increase of 2 - P0 from 5 to 7 the parameter 11 changes slightly. This flow property is also confirmed by 

Fig 2, where the curves at q -- 0 at the beginning of the flow zone are rather flat. An intense flow is localized in 

the vicinity of a minimum gap and, as the flow zone length increases, the area of the pressure diagram changes 

slightly. When q > 0, a monotonously growing dependence on 2 - P0 is characteristic for I 1; therefore virtually any 

quantity of fluid fed to the channel inlet will be pressed through a semipermeable surface. Consequently, the 

buoyancy force affecting the roll surface is proportional to the quantity of fluid supplied to the inlet. 

The efficiency of granulator operation can be determined by the output-to-consumed power ratio, or, in 

dimensionless form, I 1 / I  2. With 2 - Po changing from 1 to 7, this index decreases from 3 to -0 .9  (for q = 0) and 

to -0 .4  (for q < 1, 0 < F _ 1). Friction on the side walls reduces the efficiency of granulator operation. 

In fluid flow in a rotor-type granulator the forces of viscous friction are considerably greater than the inertia 

forces, the empty weight, and the centrifugal forces; therefore, the latter are not taken into account. Thus, from 

the data of [1 ] the following estimates are admissible: R2 = 0.32 m; co 1 -~o 2 -0 .5  rad/sec; P c -  103 kg/m ; 

~t -5-103 Pa-sec; R 2 ~  << g; Re -R2~2R2Pc/p << 1. When using the given flow model for calculating granulators 

with an inner contact of two cylinders [1 ] W= ~o2R2 should be considered as the peripheral velocity of the perforated 

cylinder, and U -- OglR 1 as the circumferential velocity of the rotor. The calculated radius providing the transition 

to the scheme of Fig. 1 is R -- R 2 R 1 / ( R 2  - R[), and a minimum gap is ho = R2 - R1. 

Thus, the hydrodynamic effect of the channel side walls is manifested in the suppression of the fluid 

counterflow at the inlet, increase of the initial pressure gradient, and growth of the thrust force and fluid flow rate 

through the semipermeable wall. 

N O T A T I O N  

x, y, z, Cartesian coordinates; U, peripheral velocity of the roll; W, translational velocity of the tray; h, 

gap height; /'to, minimum gap; 5, side gap, v x, vy, vz, velocity components; K, coefficient of channel wall 
permeability; P, P, dimensional and dimensionless pressures; R, roll radius; S, channel width;/~, fluid viscosity; 

a, angle; xo, xl, P0, 2, dimensional and dimensionless coordinates of the flow zone boundaries; F, dimensionless 
permeability; f, friction; A, q, geometrical simplexes; p, dimensionless variable; Q, bulk flow rate of fluid; F, 
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buoyancy force; N, power; I1,/2, integral parameters of flow; Wl, o)2, angular velocities of rotor and cylinder; Pc, 

fluid density, q, gravity acceleration; Re, Reynolds number; R1, R2, radii of cylinder and rotor in a granulator. 
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